#include <iostream> #include <string> using namespace std; int main() { string Dial; getline(cin,Dial,'\n'); int Time = 0; for(int i = 0; i < Dial.size(); i++) { switch(Dial[i]) { case 'A': case 'B': case 'C': Time+=3;break; case 'D': case 'E': case 'F': Time+=4;break; case 'G': case 'H': case 'I': Time+=5;break; case 'J': case 'K': case 'L': Time+=6;break; case 'M': case 'N': case 'O': Time+=7;break; case 'P': case 'Q': case 'R': case 'S': Time+=8;break; case 'T': case 'U': case 'V': Time+=9;break; case 'W': case 'X': case 'Y': case 'Z': Time+=10;break; } } cout << Time; }
1번, 2번 문제들과 확연히 차이나는 입력의 범위. 400만 ! DP를 사용해서 풀 수 없는 문제이다 . 하지만 DP가 쓰이긴 한다! 수학은 너무 어렵다. 곱셈의 역원을 공부해보다가 모르겠어서 도움을 구했다. 왜 곱셈의 역원을 구해야하는가? N! / (K! * (N-K)!) 에서 K! * (N-K)! 의 역원을 구해야 하기 때문! 곱셈의 역원을 구하는 정리인 페르마의 소정리를 이용하면 p가 1000000007 이지만 분할 정복을 이용한 제곱 수 계산 덕분에 logP 시간 소요. 분할 정복을 이용한 제곱 수 계산은 계속 써먹을 것 같아서 따로 올려놓았다. DP가 쓰이는 부분은 구해준 400만의 역원을 바탕으로 모든 역원을 구하는 부분이다. 그러므로 총 시간 소요는 O(N+LogP) long long BinomialCoefficient :: GetNum ( int N , int K ) { this - > Factorial [ 1 ] = 1 ; for ( int i = 2 ; i < = 4000000 ; i + + ) this - > Factorial [ i ] = ( this - > Factorial [ i - 1 ] * i ) % P ; this - > Invert [ 4000000 ] = this - > Pow_DC ( this - > Factorial [ 4000000 ] , P - 2 ) ; for ( int i = 4000000 - 1 ; i > 0 ; i - - ) this - > Invert [ i ] = ( this - > Invert [ i + 1 ] * ( i + 1 ) ) % P ; if ( N = = K | | K = ...
댓글
댓글 쓰기